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ABSTRACT

VERIFICATION OF DIGITAL CONTROLLER IMPLEMENTATIONS

Xuan Wang

Department of Computer Science

Master of Science

This thesis presents an analysis framework to verify the stablility property of a

closed-loop control system with a software controller implementation. The usual ap-

proach to verifying stability for software uses experiments which are costly and can

be dangerous. More recently, mathematical models of software have been proposed

which can be used to reason about the correctness of controllers. However, these

mathematical models ignore computational details that may be important in verifica-

tion. We propose a method to determine the instability of a closed-loop system with

a software controller implementation under l2 inputs using simulation. This method

avoids the cost of experimentation and the loss of precision inherent in mathematical

modeling. The method uses small gain theorem compute a lower bound on the 2-

induced norm of the uncertainty in the software implementation; if the lower bound

is greater than 1
‖G‖2−ind

, where G is the feedback system consisting of the mathemati-

cal model of the plant and the mathematical model of the controller, the closed-loop
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system is unsafe in certain sense. The resulting method can not determine if the

closed-loop system is stable, but can only suggest instability.
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Chapter 1

Introduction

This thesis establishes a framework for determining if a software implementation of

a digital controller may destabilize a closed-loop control system. In this chapter, we

present the problem to be solved and give some background knowledge.

1.1 Digital Control Systems

Digital control systems are pervasive in industry and in our everyday lives. They

can be found in a wide variety of applications including microwaves, automobiles,

machines and airplanes. Control systems are often feedback closed-loop systems,

where signals produced by the plants of particular interest are compared to their

references, and the control actions are computed based on the differences. Figure 1.1

shows a feedback closed-loop system.

The goal in a digital control problem is to design and implement a computer-based

controller according to the dynamic behavior of the plant and the required control

objectives. Gernerally, the control objectives of a control system are to decrease the

output errors, increase the speed of the system response and increase the system

bandwith1. Among all control objectives, stability is the most important because it

1System bandwith is a measure of the frequency range over which the closed-loop magnitude of

the response to a unit amplitude input exceeds 1
√

2
.

1
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Figure 1.1: A typical feedback control system

determines the safety of a system. A system is stable if every bounded input produces

a bounded output [1].

This thesis work considers the systems that can be represented with finite di-

mensional, linear and time-invariant system models. We choose this class of systems

because it includes the simplest models which cover fundamental issues in control

systems and a linear ordinary differential equation with constant coefficients is the

most common type of control law. There are many ways to design and implement a

digital controller. Here we illustrate the control procedure on which this thesis will

be based. The first step in the design procedure is to model the physical plant by

applying natural laws to their ideal building blocks, such as masses, beams, electrons

and so on. Most often, the model is composed of nonlinear differential equations.

The method can then be reduced by linearization to convert the nonlinear differential

equations into linear differential equations. Equations 1.1 and 1.2 are the state-space

representation of a linearized model, which consists of a set of first-order differential

equations in terms of state variables.

ẋ(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(t) + Du(t) (1.2)

where

2
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• t ∈ R is time,

• x(t) ∈ Rn is the state vector at time t,

• ẋ(t) = dx(t)/dt is the first derivative of x,

• u(t) ∈ Rm is the input vector at time t,

• y(t) ∈ Rp is the output vector at time t,

• A ∈ Rn×n is the dynamics matrix,

• B ∈ Rn×m is the input matrix,

• C ∈ Rp×n is the output matrix,

• D ∈ Rp×m is the feedthrough matrx.

Digital control systems operate on discrete signals rather than continuous signals.

For discrete control systems, the continuous plant model needs to be converted to

discrete model using zero-order hold operation. The resulting discrete linear difference

equations can be written as

x(k + 1) = Akx(k) + Bku(k) (1.3)

y(k) = Ckx(k) + Dku(k) (1.4)

where

• k ∈ Z = {0, 1, 2, ...} is the number of sampling,

• x, u, y are vector sequences, which represents state, input and output,

• Ak ∈ Rn×n, Bk ∈ Rn×m, Ck ∈ Rp×n, Dk ∈ Rp×m are real valued matrices.

3



www.manaraa.com

x k A x k B u k
y k C x k D u k

k k

k k

( ) ( ) ( )
( ) ( ) ( )

+ = +
= +
1

α

K
x k( )

u k( ) y k( )r k( )

Figure 1.2: Control diagram of a digital controller

The next step is to design a control law, which is a mathematical model of a con-

troller, such that the resulting feedback control system achieves the control objectives.

Equation 1.5 gives a typical full state feedback controller.

u(k) = αr(k) − Kx(k) (1.5)

where

• α ∈ R is a feedforward scalar factor for the reference,

• r(k) ∈ Rm is the reference input at sample k,

• K ∈ Rm×n is the control matrix.

Figure 1.2 shows the control diagram of the closed-loop system. The system, so

far, is amenable to analysis by well-defined mathematic theories which can be used

to prove that the digital control system is controllable and stable. In the system

described by 1.3, 1.4 and control input 1.5, the eigenvalues of matrix (Ak − Bk × K)

are the poles of the closed-loop system. The discrete-time system is BIBO (Bounded

Input and Bounded Ouput) stable if the eigenvalues of (Ak − Bk ×K) are inside the

unit circle.

4
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After the control law is designed, it is implemented in software so that the control

program can be run on the target machine to fulfill the control objectives. The con-

troller implementation in software introduces extra requirements, and errors, such as

finite number representations, finite resolution in numerical computation, program-

mer errors, and so on.

For such a controller implementation, the verification question is: “can the soft-

ware be run on the target machine to achieve system stability?” The common method

for answering this question is to do a set of experiments to verify the stability of the

software. The problem with this approach is that doing experiments to verify the

program on target machine is costly and may be dangerous, for example, when veri-

fying a flight controller. In this thesis, simulation is used to determine the instability

of the software controller implementation instead of experiments with real hardware.

Simulation is much cheaper and not dangerous.

1.2 Robustness in Controller Verification

In reality, a digital control law is usually realized in a digital processor with con-

straints such as finite number representations and finite precision, and with unknown

programmer errors. Even though the ideal control law is designed to be stable, an

implementation under these constraints and errors may decrease the desired perfor-

mance of the closed-loop system or even make the system to become unstable. Given

a controller implementation, which is derived from an ideal control law, how can we

verify the closed-loop stability?

The method we will use to verify a digital controller implementation is inspired

by methods used to handle plant uncertainties in control problems. Before discussing

how models of uncertainty can help in reasoning about software implementations,

let us first study how plant uncertainties are dealt with in control problems. As

described in section 1.1, most control designs start by modeling the plant that is to

be controlled. In reality, no mathematical model can exactly represent a physical

5
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system, and, sometimes, in order to make the problem more convinient, a plant

model is simplified. For example, a nonlinear model might be linearized to create

a new problem which is similar to the original problem in order to facilitate control

design. These modeling errors may adversely affect the performance and stability of

a control system. Because of this, robust control, which deals with various models of

plant uncertiantis, is studied. The basic idea in robust control is to model the plant

as a set P , and a controller is designed such that it provides robust stability for every

plant in the set P .

The small gain theorem is extensively used in robust control problems with plant

uncertainties [2][3][4]. This theorem gives a sufficient condition for stability in the

kinds of feedback systems shown in Figure 1.3. The closed-loop control system shown

in Figure 1.2 is an example of this kind of feedback systems. In this system, both sub-

systems G1 and G2 can be arbitrary nonlinear time-varying systems, which map sig-

nals from vector spaces with compatible dimensions. These vector spaces are equipped

with p-norms. The inputs and outputs of the subsystems satisfy the following rela-

tions.

y1 = G2y2 + u1; (1.6)

y2 = G1y1 + u2; (1.7)

where

• u1 ∈ Rn is the external input to G1,

• y1 ∈ Rn is the control input to G1,

• u2 ∈ Rm is the external input to G2,

• y2 ∈ Rm is the control input to G2.

6
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G1

G2

u1 y1

u2y2

Figure 1.3: Feedback connection

Theorem 1.2.1 (Small Gain Theorem [2]) Let G1 : lp
n → lp

m and G2 : lp
m →

lp
n be two stable operators of bounded lp-gain and assume that the closed loop system

is well posed. Then the closed loop system is stable if ‖G1‖‖G2‖ < 1.

The detailed introduction of small gain theorem together with signal norms, sys-

tem norms and their computations are presented in chapter 3. Intuitively, the small

gain theorem says that if both G1 and G2 are stable and if the multiplication of the

induced norm of G1 by the induced norm of G2 is less than 1, then the interconnected

system is stable.

The Small Gain Theorem provides a test for robust stability. In the presence of

plant uncertainty, a feedback system Ĝ can be viewed as a nominal feedback system

G, which is a system that includes the controller and nomial plant without plant

uncertainty, and plant uncertainty ∆p as shown in figure 1.4. Assume the nominal

feedback system G is stable under controller C and ∆p is also stable, then based on

small gain theorem the controller C stabilizes the system Ĝ if

‖G‖‖∆p‖ < 1;

In the case of controller uncertainty, the small gain theorem can also be used to

7
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∆ p

P

C
G

Figure 1.4: A feedback system with plant uncertainty

verify system stability. The feedback system M̂ with a software controller implemen-

tation can be viewed as a nominal feedback system M , which is a system without

controller uncertainty, together with controller uncertainty ∆c as shown in figure 1.5.

Assume that both the nominal feedback system M and the uncertainty ∆c are stable,

then by checking

‖M‖‖∆c‖ < 1

we can verify if the feedback system M̂ is stable.

In this manner, the small gain theorem is used to show that a set of controllers

can stabilize a given plant. This is important because the software implementation

of a controller will never exactly match the mathematical model of a controller in

much the same way that a mathematical model of a plant will never match the actual

plant. In this thesis, significant progress is made toward modeling uncertainty in the

8
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P

∆ C

C

M

Figure 1.5: A feedback system with controller uncertainty

controller implementation. Further work is needed to derive a theory that supports

uncertainty in both the plant and the controller.

1.3 Thesis Statement

The small gain theorem can be used to determine if a software implementation of

a digital controller may destablize the closed-loop system by giving a bound on the

2-induced norm of the uncertainty allowed in the software implementation.

9
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Chapter 2

Related Work

This work focuses on the verification of digital controller software. It relates to hybrid

system verification, controller uncertainty and computation for software verification.

This chapter presents the research work done in these three areas.

2.1 Hybrid Systems

A hybrid system consists of a collection of digital programs and a physical environ-

ment in which the digital programs interact with each other and with the environment.

Hybrid system design combines the fields of engineering control theory and computer

science verification. Digital controller verification, as studied in this thesis, lies in

the area of hybrid systems design. The modeling and verification of hybrid systems,

which exhibit very challenging problems, have received much research attention in

the past decade.

Alur et al. model hybrid systems as finite automata with continuous variables

that evolve continuouly with respect to time based on dynamic laws [5]. The model

consists of six components: locations, variables, synchronization labels, transitions,

activities and invariant conditions; as shown in Figure 2.1. The hybrid system

in Figure 2.1 consists of two locations, Location1 and Location2. Each localtion

has a set of activities, such as Activity1 in Location1. At eahc location there are

11
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Figure 2.1: Finite automata model of hybrid systems as used in [5].

invariant conditions. Invariant conditions are predicates over variables that must

be satisfied in that location, such as Invariant1 in Location1. Transitions are jump

conditions under which the system switches from one location to another location. For

example, transition1 is the transition condition from Location1 to Location2. Alur

et al. prove that the the reachability problem for simple multirate timed systems

is decidable, while the reachability problem for 2-rate timed systems is undecidable,

where 2−rate timed systems are systems with two distinct clock rates. They present

a methodology for verifying linear hybrid systems using forward analysis, backward

analysis and aproximate analysis.

A symbolic model checker, HyTech, is implemented for verifying linear hybrid

systems based on the finite automata model [6]. HyTech computes the reachable

state set of a linear hybrid automaton, then checks if the state assertion is false for

this set. HyTech requires that, given a state assertion, all the reachable states must

converge to a fixed point within a finite number of transitions and flows. Because

of these requirements, HyTech can only verify a restricted classes of linear hybrid

automta. This class includes, for example, timed automata.

Because checking reachability is undecidable for general hybrid systems, many

researchers have focused on finding decidable subclasses of hybrid systems. Puri and

Varaiya consider a subclass of hybrid systems with constant rectangular differential

12
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inclusions [7]. They show that verification for this class of hybrid systems is decid-

able. Alur et al. consider classes of hybrid systems, either with simple continuous

dynamics, such as timed automata, multirate automata and rectangular automata,

or with simple discrete dynamics, such as order-minimal hybrid systems [8]. They

abstract these subclasses of hybrid systems to a class of purely discrete systems which

preserve all properties definable in temporal logic. Based on this result, they present a

unified way to collectively define the boundary betwen decidability and undecidaility

for hybrid systems.

Tomlin et al. develop a reachability computation algorithm based on level set

techniques and viscosity solutions [9]. It employs an implicit surface function rep-

resentation of the reachable set and, computes its evolution using constrained level

set methods and discrete mappings through transition functions. This algorithm in-

creases the ability to compute reachable sets of hybrid systems. Therefore it is able

to represent, analyze and verify nonlinear hybrid systems.

An explicit discrete model checker, called Murϕ, extended with a long double

floating point type is used to verify a Turbogas Control System [10]. The differen-

tial equitions of the control system are discretized with a certain sampling time and

an uncontrollable disturbance and its derivatives are restricted by constant bounds.

Reachable states are explicitely computed in Murϕ based on the discrete time models.

This method neglects reachable states between sample points, thus cannot gurantee

whether the control system satisfies requirements between sample points. This prob-

lem can be solved by assuming that the system dynamics are piecewise continuous

between sampling points and that every pair of contiguous sampling points contain

the maximum and minimum values between them.

All of these works in hybrid system verification implicitly assume that all hybrid

systems are stable. Verification is done by computing reachable states based on the

ideal models of the hybrid systems using various methods and then checking if unsafe

13
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t
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0

a

Figure 2.2: Response of a stable system with step input

properties are satisfied in these reachable states. The stabililty of hybrid systems is

an important property in hybrid automata. In the hybrid automata model of hybrid

systems, the activities at each location are either systems natural responses or are

achieved by control devices. If a system is stable, then the system will follow the

trajectory as described in the activities. If a system is unstable, the system response

goes to infinity as time goes to infinity. An unstable system does not follow the

trajectories as described in the activities and it may reach every state in the state

space. In other words, every unstable system is unsafe. For example, if an activity

of a system in one location is to follow a step input a, Figure 2.2 shows a response

of a stable system, the reachable state is x = a. Figure 2.3 shows a response of an

unstable system, the reachable x could be any value, even unsafe value.

Nesic et al briefly introduce the concept of input-to-state stability (ISS). In an

ISS system, bounded inputs and inputs converging to zero produce states which are

also bounded and converging to zero. The authors propose to use the ISS small-

gain theorem to analyze the stability of hybrid systems [11]. The authors view

a hybrid system as a feedback closed-loop system consisting of two subsystems and

each subsystem in the decomposition is a continuous, discrete, or hybrid system as

shown in figure 2.4. Then the small gain theorem is applied to reduce the problem of

14



www.manaraa.com

t

x

0

a

Figure 2.3: Response of an unstable system with step input

verifying ISS of the hybrid system to be a problem of verifying ISS of its subsystems

and checking a condition of the subsystems’ gains. The authors provide a small-gain

analysis framework for hybrid systems, however, the analysis is conducted only with

mathematical models of hybrid systems and no concrete implementation is considered.

2.2 Controller Uncertainty

In control theory, plant uncertainty has long been studied [2] [3] [12]. It is known

that no mathematical system can exactly model a physical system and these modeling

errors may lead to the unstability of a control system. Robust stability is a kind of

stability that allows the presence of modeling errors. The basic idea is that instead

of modeling the plant as a single fixed model, the plant is modeled as a set. This

set can be structured or less structured, that is, plant uncertainties are modeled as

a finite number of uncertain parameters (structured), or the frequency response of

the plant for every frequency lies in a set in the complex plane (less structured). In

robust control, the small gain theorem is used to design and verify a controller such

that the controller provides robust stability to every closed-loop system in the plant

model set In other words, the controller provides internal stability for every plant in

the plant model set.

In robutst control, controller uncertainty had long been ignored as it is noted

15
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H1

H2

Figure 2.4: Decomposition of a hybrid system used to show input-to-state stability

in [11]

that plant uncertainty is the most significant source of uncertainties in control sys-

tems, while controllers are generally implemented with high precision hardware and

software. Keel and Bhattacharyya raise the problem that a controller may not be

implemented exactly [13]. They also point out that controller uncertainty exists due

to imprecision inherent in A/D and D/A conversion, finite word length, finite resolu-

tion of measureing instruments and roundoff errors in numerical computations, and

that useful design procedures require a controller to have sufficient room for read-

justment of its coefficients. Through examples, they show that optimum and robust

controllers, designed by using H2, H∞, l1 and µ formulations, can be extremely “frag-

ile”, that is, they can result in unstable closed-loop control systems even if very small

perturbations are applied to the coefficients of the designed controllers.

Whidborne et al. present a pole sensitivity approach to reduce controller fragility

through a state space parameterization of the controller [14]. This method is based on

a weighted norm of the closed-loop pole/eigenvalue sensitivities to controller param-

eter perturbations. They provide conditions for the optimal state space realization

of the controller and a numerical method to obtain the solution is introduced. Wu et

16
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al. apply this pole sensitivity approach to investigate stability of discrete time con-

trol systems, where the digital controllers are implemented with finite word length

(FWL) [15]. The authors derive an improved stability measure which estimates the

closed-loop stability robustness of an FWL implemented controller more accurately.

Controller uncertainty is considered when designing an optimal mathematically

modeled controller so as to reduce the closed-loop control system’s sensitivity to

controller parameter pertubations. No software implemention of the controller is

studied to check if given this software implemention, the closed-loop control system

is stable or not. In this thesis, uncertainties of the software controller implementations

are studied. we present a method which applies the small gain theorem to determine

the instability of a closed-loop control system by computing the norm of the controller

uncertainty.

2.3 Modeling of Software for Verification

Reasoning about the stability of a closed-loop control system with software con-

troller implementation requires either modeling the software implementation and then

computing the norm of its uncertainty based on the mathematical model, or using

simulation to compute the norm of the uncertainty directly from the software imple-

mentation.

Roozbehani et al. present a framework for modeling and analysing real-time

safety-critical software [16]. They model software as a dynamical system and then

convert verification of software properties, such as bounded-ness of variables and

termination of the program in finite time, to an optimization-based search for system

invariants. This modeling approach ignores software implementation details, such as

discretization and scheduling etc, which is good because verification is focused on

proving the desired properties of the software and this method is scalable to large-

size computer programs. The problem of this approach is that the run-time errors

caused by implementation details can not be detected. In contrast, in this thesis
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work, we verify the instability property of a closed-loop control system with software

controller implementation using simulation. Implementation details are reserved in

the simulation, therefore, run-time errors caused by these details can be detected.

But, can not guarantee absence of errors.
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Chapter 3

Verification of Digital Controller

Implementations

In this chapter, the small gain theorem is applied to the verification of a digital

controller implementation. We start by defining the verification problem, then give

a detailed explanation of the small gain theorem. After that, the method which uses

the small gain theorem to verify the stability of a closed-loop system built from a

digital controller implementation is presented.

3.1 Problem Definition

Consider a discrete-time closed-loop control system which consists of a linear,

finite-dimensional, time-invariant plant P and a digital controller C as shown in

Figure 3.1. The plant is assumed to be strictly proper1 with state-space representation

as shown in equations 1.3 and 1.4, which are,

x(k + 1) = Akx(k) + Bku(k)

y(k) = Ckx(k) + Dku(k)

1In control theorey, a strictly proper system is a system in which the numerator of the transfer

function has lower degree than the demonitor. It implies that the system’s outputs approach zero

as the input frequency approaches infinity.
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P

C

r uC y

x

Figure 3.1: A closed-loop system without controller uncertainty

and the digital controller is represented as in equation 1.5 which is,

u(k) = αr(k) − Kx(k)

The stability of this closed-loop system depends on the eigenvalues of the matrix

Âk = Ak − Bk ∗ K

If we assume that the digital controller was correctly designed to stabilize the

closed-loop system, then the eigenvalues of Âk satisfy

|λi(Âk)| < 1, ∀i ∈ {1, 2, ...n}

Even though the digital controller C stabilizes the closed-loop system, its realiza-

tion Cr, in its software implementation, which includes other factors, such as finite

word length and inevitable programmer errors, may destabilize the system. Now

given an controller realization Cr which is an implementation of the digital controller

C to be run on a target processor, we want to verify that the closed-loop system which

consists of the plant P and the controller implemention Cr on the target processor is

stable.

The basic idea of our method is that we model Cr to be a norminal controller C

with some uncertainty ∆c as shown in Figure 3.2. By applying the small gain theorem,

we can compute the maximum controller uncertainty ∆ such that any controller, if
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Pr uCr
y

x
C

Cr
∆ C

Figure 3.2: A closed-loop system with controller uncertainty

its uncertainty is within the uncertainty set ∆, can stabilize the closed-loop system.

Then, by checking whether or not the uncertainty ∆c of the controller implementation

Cr sits inside the maximum uncertainty set ∆ , we can verify that the implementation

Cr stabilizes the closed-loop system.

3.2 Small Gain Theorem

The small gain theorem provides a method to quantify or measure “robust stabil-

ity” , which is the stability under uncertainty. The stability measurement is expressed

in system norms, or operator norms. In order to understand small gain theorem, we

start by introducing signal norms and system norms.

3.2.1 Signal Norms

A signal norm measures the “size” of a signal. There are many different norm

definitions, we begin with the general norm.

Definition 3.2.1 (General Norm) Let V be a linear space. A norm on V is a

bounded function ‖ ∗ ‖ mapping V into R+ which satisfies the following conditions.

1. ‖x‖ ≥ 0

2. ‖x‖ = 0 ↔ x(t) = 0, ∀t
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3. ‖αx‖ = |α|‖x‖, ∀ ∈ R

4. ‖x + y‖ ≤ ‖x‖‖y‖

where x and y are any signals on V .

Definition 3.2.2 (Normed Linear Space) A normed linear space is a linear space

equipped with a norm.

The p-norm of the finite-dimensional vector space x ∈ Rn is defined as

‖x‖p = (
n∑

i=0

|xi|p)
1

p

for any 1 ≤ p ≤ ∞.

The p-norm of a vector provides different measures of its length. The most com-

monly used p-norms are the 1-norm, 2-norm and ∞-norm. They are

• 1-norm ‖x‖1 =
n∑

i=1
|xi|,

• 2-norm ‖x‖2 = (
n∑

i=1
|xi|2)

1

2 ,

• ∞-norm‖x‖∞ = maxi |xi|.

To illustrate the meaning of these norms, let us consider a vector space with n = 2

and let u be a point with coordinates (xu, yu) as shown in Figure 3.3. Then the 1-

norm of u is |xu| + |yu|, which is the sum of the absolute values of its coordinates.

The 2-norm is
√
|xu|2 + |yu|2, which is the Euclidean distance from the origin to u.

The ∞-norm is max (xu, yu). In this example, we see that ‖u‖1 ≥ ‖u‖2 ≥ ‖u‖∞. In

general, this is true in finite dimensional spaces.

Let us now extend the finite-dimensional space to an infinite sequence. Let Z

denote the set of all integers and lnp (Z) denote the space of all vector-valued real

sequences with dimension n and with bounded p-norm defined as
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u x yu u( , )

Figure 3.3: Norms over R2

‖x‖p = (
∞∑

k=0

|x(k)|p) 1

p

for any 1 ≤ p ≤ ∞.

When p = 1, p = 2, p = ∞, the respective norms are,

• 1-norm ‖x‖1 =
∞∑

k=0
|x(k)|,

• 2-norm ‖x‖2 = (
∞∑

k=0
|x(k)|2) 1

2 ,

• ∞-norm‖x‖∞ = sup
k≥0

|x(k)|.

If p = 2, the norm ‖x‖2 is the amount of energy contained in the signal. If p = ∞,

the norm ‖x‖∞ is the maximum magnitude that the signal attains over all time. In

general, every finite energy signal is also a finite magnitude signal, but not vice versa.

Lebesgue integrable functions2 will be needed to define a class of operators used

later. Therefore, we introduce the p-norm of Lebesgue integral functions here. Let

Lp(B) denote the space of all Lebesgue integrable functions on closed set B with

2In mathematics, the integral of a function of one real variable can be regarded as the area of a

plane region bounded by the graph of that function. Lebesgue integration is a mathematical theory

that extends the integral to a very large class of functions.
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bounded p-norm defined as

‖x‖p = (
∫

B
|x(t)|pdt)

1

p

for any 1 ≤ p ≤ ∞. Respectively, the 1-norm, 2-norm and ∞-norm of this type of

signals are

• 1-norm ‖x‖1 =
∫
B |x(t)|dt

• 2-norm ‖x‖2 = (
∫
B |x(t)|2dt)

1

2

• ∞-norm‖x‖∞ = sup
t∈B

|x(t)|

3.2.2 System Norms

If signals can be defined to be in some suitable signal space, a system which maps

input signals to output signals can be defined as an operator between two signal

spaces. Let T be an operator mapping signals from X to Y , where X and Y are two

normed linear spaces, then the norm of the system is defined as

Definition 3.2.3 (System Norm) The norm of a system T is its induced norm

which is defined as

‖T‖ = sup
x6=0

‖Tx‖
‖x‖ (3.1)

where x ∈ X, Tx ∈ Y .

The norm of a system is also called the gain of the system or gain of the operator.

We say a system T a bounded operator if and only if its induced norm is finite,

i.e.,

‖T‖ = sup
x6=0

‖Tx‖
‖x‖ < ∞

Definition 3.2.4 A linear or nonlinear system T is stable with respect to some in-

put/output space if it is a bounded operator.
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3.2.3 Small Gain Theorem

Consider the interconnected system as shown in Figure 1.3 where G1 and G2 can

be nonlinear time-varying systems. The inputs and outputs of the system satisfy

equations 1.6 and 1.7.

Definition 3.2.5 (Well Posedness) The feedback system shown in Figure 1.3 is

well posed if for any given input u1, u2 in a normed linear space, there is a unique

output y1, y2 in that normed linear space.

Intuitively, well-posedness means that the system has a unique response for every

input. In software terms, well-posedness implies that a system is deterministic but

well-posedness is stronger than determinism because it also implies unique outputs

for every input.

Definition 3.2.6 (causal) An operator is causal if its current output does not de-

pend on future inputs. An operator is strictly causal if its current output depends on

past inputs, not including the current input.

The following theorem provides a way to determine if a feedback system is well

posed and well-poseness is a condition used in the small gain theorem.

Theorem 3.2.1 [2] The feedback system shown in Figure 1.3 is well posed if the

operator G1G2 is strictly causal, where G1G2 is an operator that cascades G1 and G2.

Stability of the interconnected system is defined in the following definition.

Definition 3.2.7 (Stability) Let the closed-loop feedback system be expressed as



y1

y2


 = H(G1, G2)




u1

u2


 ,

where H(G1, G2) is the operator mapping input u1, u2 to output y1, y2, then the closed-

loop system is lp-stable if

‖H(G1, G2)‖lp−ind < ∞
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Now we are ready to introduce the small gain theorem which will be used in digital

controller verification.

Theorem 3.2.2 (Small Gain Theorem [2]) Let G1 : lp
n → lp

m and G2 : lp
m →

lp
n be two stable operators of bounded lp-gain and assume that the closed loop system

is well posed. Then the closed loop system is stable if ‖G1‖‖G2‖ < 1.

The small gain theorem says that in the closed-loop system as shown in Figure 1.3,

if both G1 and G2 are stable and the feedback system is well posed, and if the

mulitplication of the induced norm of G1 with the induced norm of G2 is less than

1, then the feedback closed-loop system is stable. The small gain theorem provides a

foundation for the verification of digital controller implementation. In the presence

of controller uncertainty, a feedback system Gr can be viewed as an ideal feedback

system G, which is a system without controller uncertainty, together with controller

uncertainty ∆c, if both G and ∆c are stable and the feedback system is well posed,

then by checking if the multiplication of ‖G‖‖∆c‖ is less than 1, we can verify the

stablility of the closed-loop system.

3.3 Verification of Digital Controller Implementation

Returning to digital controller verification, the closed-loop system with controller

uncertainty shown in Figure 3.2 can be viewed as an interconnected system with

subsystem G and ∆C as shown in Figure 3.4, where

• G consists of the plant P and the nominal controller C (the ideal controller

without uncertainty),

• ∆C is the controller uncertainty,

• r is the external input,

• u is control input to the plant,
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P

C

∆ C

Gr uCr y

xw v

Figure 3.4: An interconnected system of an ideal control system and controller un-

certainty

• y is the plant output,

• x is the state of the closed-loop system G,

• uC = v + r is the output of the state-feedback controller C and

• uCr
= w + r is the output of the controller realization Cr, that is, the output of

the controller program.

From section 3.1, we know the system G is designed to be stable, which means

G is a stable operator on lp space. Here we consider input and output signals in l2

space, that is, G is a stable operator on l2 space. ∆C is a stable system becuase if

the controller program properly handles “divide by zero”, given any finite input the

program will produce finite output. This means ∆C is a stable operator on l2 space.

We assume that the interconnected system shown in Figure 3.4 is well posed. Now

we want to verify the stability of the feedback closed-loop system. By applying the

small gain theorem, we conclude that the interconnected system is stable on l2 if

‖G‖2−ind ‖∆C‖2−ind < 1 (3.2)
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which is

‖∆C‖2−ind = sup
x6=0

‖uCr
− uC‖2

‖x‖2
<

1

‖G‖2−ind

(3.3)

Equation 3.3 provides a constraint on ‖∆C‖2−ind. The equation means that: given

any implementation of the controller C, if the 2-induced norm of uncertainty is less

than this bound, the controller implementation will stablize the interconnected system

in the l2 signal space. The problem then becomes computing ‖G‖2−ind. In the fol-

lowing section, we briefly introduce the background knowledge necessary to compute

‖G‖2−ind and then give the computation of ‖G‖2−ind using Fourier transformations.

3.3.1 Computation of Linear Operator Norms

We will introduce inner product space, linear operator, and frequency domain

signal and system space in this section.

3.3.1.1 Inner Product Space

Definition 3.3.1 (General Inner Product) [17] An inner product on a linear space

V is a function that maps each ordered pair of sequences x, y to a real (or complex)

value denoted as < x, y > and satisfies the following axioms.

1. < x, y > = < x, y > 3.

2. < x, x > ≥ 0 and < x, x >= 0 if and only if x = 0.

3. < x, y + z > = < x, y > + < x, z >

4. < x, αy > = α < x, y > for all α ∈ R or α ∈ C.

Definition 3.3.2 An inner product space is a linear space equipped with an inner

product.

Theorem 3.3.1 All inner product spaces are normed linear spaces.

3< x, y > is the conjugate of the complex number < x, y >. The conjugate of a complex number

is given by changing the sign of its imaginary part, for example, a + jb = a − jb
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Proof:

If X is an inner product space, then ‖x‖ =
√

< x, x > defines a norm on X. End of

Proof.

Let x = {x(0), x(1), ..., x(k), ...} be a sequence in a normed linear space X. The

sequence converges to an element xc ∈ X if

lim
k→∞

‖xc − x(k)‖ = 0

Intuitively, if x converges to xc, then its elements get closer and closer to each other

as k becomes larger. This property is captured in the following definition.

Definition 3.3.3 (Cauchy sequence) [2] A sequence x = {x(0), x(1), ..., x(k), ...}

is a Cauchy sequence if for every ε > 0, there exists an N such that

‖x(k1) − x(k2)‖ < ε

for all k1, k2 ≥ N

We say a normed linear space X is a complete normed linear space if every Cauchy

sequence in X has a limit in X. A complete normed linear space is also called a

Banach space.

Definition 3.3.4 A Hilbert space is a complete inner product space.

From the definition of the Hilbert space, we can see that the space of ln2 is a Hilbert

space with the inner product defined as

< x, y > =
∞∑

k=−∞

yT (k)x(k).

And the resulting norm is exactly the 2-norm as defined earlier.
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3.3.1.2 Frequency Domain Signal Spaces

In section 3.2.1, we introduced time domain signal norms and spaces. Sometimes

it is advantageous to present problems in freqency domain so as to make the problem

simpler to solve and easier to conceptulize, especially the l2 space. Here we introduce

the frequency domain signal spaces and their norms.

The Fourier Transform replaces a signal defined in the time domain into one

defined in the frequency domain. Let the Fourier Transform of a sequence x be

x̂(eiθ) =
∞∑

k=−∞

x(k)eikθ,

then the space of all Fourier Transforms of ln2 (Z) with inner product defined as

< x̂, ŷ > =
1

2π

∫ 2π

0
ŷ∗(eiθ)x̂(eiθ)dθ

is also an inner product space. Here ∗ denotes the conjugate-transpose4 of a complex-

valued matrix. The useful fact about Fourier Transform is that the inner product of

elements in ln2 (Z) is preserved under the transform, which is

< x, y > = < x̂, ŷ >

Let Ln
2 [0, 2π] be the space of all complex vector-valued Lebesque-integrable func-

tions on [0, 2π] with < x̂, x̂ >< ∞. Because the inverse Fourier Transform exists for

every element in Ln
2 [0, 2π], the following statements hold.

• If x ∈ ln2 (Z), then x̂ ∈ Ln
2 [0, 2π].

• If x̂ ∈ Ln
2 [0, 2π], then x ∈ ln2 (Z).

Let S be a subset of normed linear space, we say a point x0 ∈ S is an interior

point [2] of S if there exists a ball of radius ε such that

B(x0, ε) = {x|‖x − x0‖ < ε, x ∈ S}
4the conjugate transpose of an m-by-n matrix A with complex entries is the n-by-m matrix A*

obtained from A by taking the transpose and then taking the complex conjugate of each entry.
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We say S is open if every point in S is an interior point. A function f(x) on an open

space S is said to be analytic at a point z0 ∈ S if it is differentiable at Z0 and also at

each point in some neighborhood of z0. A function is analytic in S if it is analytic at

each point of S.

Let Z+ be the set of all nonnegative integers and the space ln2 (Z+) is the the subset

of ln2 (Z) such that its elements are zero for t < 0. Fourier Transforms of elements of

ln2 (Z+) are analytic continuous in the open unit disc. Let Hn
2 denote the space of all

functions which are analytic in the open unit disc, then x̂ ∈ Hn
2 means x̂ ∈ Ln

2 [0, 2π]

and x̂ is analytic in the open unit disc.

3.3.1.3 Linear Operators

T is a linear operator if it satisfies

T (αx1 + βx2) = αT (x1) + βT (x2)

for all α, β ∈ R.

Definition 3.3.5 (time-invariant) An operator is time-invariant if its action does

not depend on the starting time.

A linear operator on lp signal space can be represented as a multiplication operator

with infinite matrix R,



y(0)

y(1)

...




=




R(0, 0) R(0, 1) R(0, 2) · · ·

R(1, 0) R(1, 1) R(1, 2) · · ·
...

...
...

. . .







x(0)

x(1)

...




(3.4)

where R(i, j) is the ith, jth block of matrix R. This matrix representation of the

operator acts on inputs of ln by multiplication, that is

y(k) =
∞∑

j

R(k, j)u(j) ∈ Rm

If the system R is causal, then
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R(i, j) = 0, for all i < j.

If it is strictly causal, then

R(i, j) = 0, for all i ≤ j.

If it is time-invariant, then

R(i, j) = R(i + 1, j + 1).

Therefore, a linear, time-invariant, causal operator has the following infinite ma-

trix form,



R(0) 0 · · · 0

R(1) R(0) 0 · · ·
...

...
...

. . .

R(k) R(k − 1) · · · 0

...
...

...
. . .




(3.5)

Let Lm×n denote the space of all linear, causal operators, then the infinite matrix

in equation 3.4 becomes



R(0, 0) 0 · · · 0

R(1, 0) R(1, 1) 0 · · ·
...

...
...

. . .

R(k, 0) R(k, 1) · · · 0

...
...

...
. . .




(3.6)

and the output of the operator can be obtained by

y(k) =
k∑

j

R(k, j)u(j) ∈ Rm

Operators in Lm×n may or may not be bounded. We say an operator R is bounded

on l2 if and only if

‖R‖ = sup
k

σmax(Rk) < ∞.
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where Rk is the kth dimensional block of the matrix shown in equation 3.6, which is



R(0, 0) 0 · · · 0

R(1, 0) R(1, 1) 0 · · ·
...

...
...

. . .

R(k, 0) R(k, 1) · · · R(k, k)




and σmax(Rk) is maximum singular value of Rk.
5

3.3.1.4 Frequency Domain Operator Spaces

Just as the time domain signal space ln2 can be identified by the frequency domain

signal space Hn
2 , the time domain operator space with bounded norms can also be

identified by the frequency domain signal space.

Let Lm×n
∞ denote the space of all complex-valued matrix functions on the unit

circle with bounded norms, then R̂ ∈ Lm×n
∞ means

‖R̂‖∞ = ess sup
θ

σmax[R̂(eiθ)] < ∞. (3.7)

where ess sup f(x) is the essential supremum of function f(x); essential suprenum of

f(x) is the smallest number a ∈ R for which f(x) only exceeds a on a set of measure

zero.

Define a multiplication operator Ĝ ∈ Lm×n
∞ on the space Ln

2 [0, 2π] as

Ĝ : Ln
2 [0, 2π] → Ln

2 [0, 2π],

we have

‖Ĝx̂‖2 =
(

1

2π

∫ 2π

0
|Ĝ(eiθ)x̂(eiθ)|22dθ

) 1

2

≤ ess sup
θ

σmax[Ĝ(eiθ)]‖x̂‖2. (3.8)

Therefore, the induced norm of this operator Ĝ statisfies

‖Ĝ‖ = sup
x6=0

‖Ĝx̂‖
‖x̂‖

5The singular values of a matrix A are the positive square roots of the nonzero eigenvalues of

A ∗ A

33



www.manaraa.com

= ess sup
θ

σmax[Ĝ(eiθ)]

≤ ‖Ĝ‖∞.

Let Hm×n
∞ denote the subspace of Lm×n

∞ in which all the elements are analytic

continuous in the unit disc. Then R̂ ∈ Hm×n
∞ means R̂ is analytic in the open unit

disc and bounded on the unit circle. The following theorem shows when the equality

in equation 3.8 holds.

Theorem 3.3.2 [2] For every bounded linear time-invariant, causal operator G on

l2(Z+), there exists a multiplication operator Ĝ ∈ Hm×n
∞ on Hn

2 such that y = Gx

statisfies ŷ(eiθ) = Ĝ(eiθ)x̂(eiθ). The induced norm of this operator is equal to ‖Ĝ‖∞.

The usefulness of theorem 3.3.2 is that it provides a way to compute the norm

of an operator in Lm×n which equals the norm of the corresponding multiplication

operator. That is, to compute the 2-induced norm of linear time-invariant, causal

operator G, we first transform G to a frequency domain operator Ĝ, then compute

‖Ĝ‖ using equation 3.7.

3.3.1.5 Computing ‖G‖2−ind

Now let us compute ‖G‖2−ind. Recall that the closed-loop system G which consists

of plant P and nominal controller C as described in equation 1.3 and 1.5 is

x(k + 1) = Akx(k) + Bku(k)

= Akx(k) + Bk(αr(k) − Kx(k))

= (Ak − BkK)x(k) + αBkr(k)

= (Ak − BkK)kx(0) + α
k−1∑

i=0

(Ak − BkK)k−i−1Bkr(i)

Assume x(0) = 0, then the input to state system equation is

x(k + 1) = α
k−1∑

i=0

(Ak − BkK)k−i−1Bkr(i),
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which can be represented in a matrix form as follows,




x(0)

x(1)

x(2)

...

x(k)




=




0 0 · · · 0

αBk 0 · · · 0

α(Ak − BkK) αBk · · · 0

...
...

...
. . .

α(Ak − BkK)k α(Ak − BkK)k−1 · · · 0







r(0)

r(1)

r(2)

...

r(k)




(3.9)

The infinite matrix in equation 3.9 has the same form as equation 3.5 except that

R(0) = 0, which shows that closed-loop system G is a linear, strictly causal and

time-invariant system.

From theorem 3.3.2, we get

‖G‖2−ind = ‖Ĝ‖∞ (3.10)

There are many algorithms which can be used to compute the H∞ norm of a

linear, time-invariant operator [18][19][20]. In this thesis, we make use of a free

scientific software package, Scilab, to compute the ‖Ĝ‖∞ .

Now that we have the value of ‖G‖2−ind which is equal to ‖G‖∞, we need to

compute the 2-induced norm of the software uncertainty, which is

sup
x6=0

‖uCr
− uC‖2

‖x‖2
. (3.11)

Then by verifying that

sup
x6=0

‖uCr
− uC‖2

‖x‖2

<
1

‖G‖∞
(3.12)

we can verify that the controller program Cr stablizes the closed-loop system.

The computation of 2-induced norm of controller uncertainty ∆k is presented in

the following chapter.
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Chapter 4

Computation of 2-induced Norm of

Controller Uncertainty

In chapter 3, we reduced the verification problem to the problem of computing the

norm of controller uncertainty ∆C . The problem we now face is that given a piece of

controller software, we do not have the mathematical model of this software which

can be used in established algorithms to compute the 2-induced norm.

Instead, we will compute the 2-induced norm of ∆C through its definition, which

is equation 3.11.

sup
x6=0

‖uCr
− uC‖2

‖x‖2

.

The definition requires that the 2-induced norm is computed over all state sequences

∀x ∈ R and over all time. In general, since the state space consists of infinite number

of states and the time domain is infinite, these two infinite ranges make the induced

norm uncomputable. In this chapter, we provide a method to approximate a lower

bound of this 2-induced norm and this lower bound can be used to determine when

the system may be unstable.
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PTi
S

u ~u ~y

Figure 4.1: A nonlinear operator with truncated input

4.1 Computing the 2-induced Norm of Software Contronller Uncertainty

Let Pk, k ∈ Z+, denote the standard truncation operator on ln [2], then

Pk(x(0), x(1), ...) = (x(0), x(1), ..., x(k), 0, 0, ...). (4.1)

Let S be a nonlinear operator, let PTi
be an input truncation operator, and let u

be an input from S’s input space and its truncation ũ be

ũ = PTi
u

= PTi
(u(0), u(1), ...)

= (u(0), u(1), ..., u(Ti), 0, 0, ...). (4.2)

The following definition describes the norm of an operator with truncated input.

Definition 4.1.1 Let S � PTi
be the operator S with truncated inputs as shown in

figure 4.1, and let ỹ be the output of operator S under truncated input ũ, then

‖S � PTi
‖ = sup

ũ6=0

‖ỹ‖
‖ũ‖ (4.3)

The norm under truncated inputs is defined because we can only feed inputs to

the system in finite time in simulation.

If S is a linear operator, then

S � PTi
= S × PTi

, (4.4)

which is the multiplication of matrices S and PTi
.
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The norm of an operator with truncated inputs from a subset of the operator’s

input space is,

Definition 4.1.2 Let I denote a subset of operator S’s input space then

‖S � PTi
‖I = sup

u6=0,u∈I

‖ỹ‖
‖ũ‖ (4.5)

The norm under truncation is defined over a limited input space because we can

only visit a finite subset of the inputs in simulation. We are now ready to prove that

the norm over truncated inputs is less than or equal to the true norm.

Theorem 4.1.1 Let S be a nonlinear operator, let PTi
be an input truncation oper-

ator, let I denote a subset of S’s input space, then

‖S � PTi
‖I ≤ ‖S‖. (4.6)

Proof:

We consider two cases, the first case is that the operator S has bounded norm, the

second case is that the operator S’s norm is not bounded.

Case 1: the operator S has bounded norm. First, note that if any input u is in

S’s input space, and its truncation ũ is also in its input space, so that

‖S � PTi
‖ ≤ ‖S‖ (4.7)

Since S has bounded norm, we know that S has finite gain by Definition 3.2.4,

i.e.

‖S‖ = sup
u6=0

‖y‖
‖u‖ < ∞ (4.8)

where u, y are the input and output of operator S and u ∈ S’s input space.

Because the operator S has finite gain, there must exist an input u? ∈ S’s input

space such that with this input, S obtains its maximum gain, that is,

‖y‖
‖u‖ ≤ ‖S‖ =

‖y?‖
‖u?‖ (4.9)
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where y? is the output of S with input u?.

Now we truncate any input u in S’s input space, before feeding it into operator

S. Since u and ũ are both in S’s input space, based on the hypothesis that u? gives

S its maximum gain, we obtain

sup
u6=0

‖ỹ‖
‖ũ‖ ≤ ‖y?‖

‖u?‖ = ‖T‖ (4.10)

where ỹ is the output of S with truncated input ũ.

Because

‖S � PTi
‖ = sup

u6=0

‖ỹ‖
‖ũ‖ , (4.11)

we have

‖S � PTi
‖ ≤ ‖S‖.

Since I is a subset of S’s input space, it is clear that

‖S � PTi
‖I = sup

u6=0,u∈Ĩ

‖ỹ‖
‖ũ‖

≤ sup
u6=0

‖ỹ‖
‖ũ‖

= ‖S � PTi
‖.

Based on equation 4.7, we conclude that

‖S � PTi
‖I ≤ ‖S‖.

Case 2: the operator S’s norm is not bounded. It is clear that

‖S � PTi
‖I ≤ ∞ = ‖S‖.

End of Proof.

Let PTo
be an output truncation operator, let ỹ be the output of a non-linear

operator under truncated input ũ which is an infinite sequence, then ˜̃y denotes the
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PTi
PToS

~u ~yu ~~y

Figure 4.2: A nonlinear operator with truncated input and truncated output

truncation of ỹ, that is,

˜̃y = PTo
ỹ

= PTo
(ỹ(0), ỹ(1), ...)

= (ỹ(0), ỹ(1), ..., ỹ(To), 0, 0, ...). (4.12)

The norm of an operator with only truncated input and truncated output is char-

acterized in the following definition.

Definition 4.1.3 Let S be a nonlinear operator, let PTi
be an input truncation oper-

ator and PTo
be an output truncation operator. Then PTo

�S �PTi
denotes the operator

S with only truncated inputs and truncated outputs as shown in Figure 4.2, and

‖PTo
� S � PTi

‖ = sup
u6=0

‖˜̃y‖
‖ũ‖ (4.13)

If S is a linear operator, then

PTo
� S � PTi

= PTo
× S × PTi

, (4.14)

which is a multiplication of matrices PTo
, S and PTi

.

Definition 4.1.4 Let S be a nonlinear operator, let PTi
be an input truncation op-

erator and PTo
be an output truncation operator. Let I denote a subset of S’s input

space, then

‖PTo
� S � PTi

‖I = sup
u6=0,u∈I

‖˜̃y‖
‖ũ‖ (4.15)

41



www.manaraa.com

The norm under truncation outputs is defined because we can only observe the

system outputs in finte time in simulation. Now we are ready to prove that the norm

over truncated inputs and truncated outputs is less than or equal to the true norm.

Theorem 4.1.2 Let S be a nonlinear operator which is causal, let PTi
be an input

truncation operator and PTo
be an output truncation operator. Let I denote a subset

of S’s input space and Ĩ denote the subset which consists of truncations of all inputs

from I. If Ĩ is in S’s input space

‖PTo
� S � PTi

‖I ≤ ‖S‖ (4.16)

Proof:

First we prove that, if any input u is in S’s input space, and its truncation ũ = PTi
u

is also in S’s input space, then

‖PTo
� S � PTi

‖ ≤ ‖S‖ (4.17)

Since operator S is causal, its output does not depend on its future inputs. There-

fore for any output y, if truncated, its norm becomes smaller, in other words,

‖PTo
y‖ ≤ ‖y‖ (4.18)

Dividing both sides with the norm of input u, we have

‖PTo
y‖

‖u‖ ≤ ‖y‖
‖u‖ . (4.19)

If input u is replaced by truncated input ũ, where ũ = PTi
u, and output is replaced

with ỹ, which is the output of S under input ũ, equation 4.19 becomes,

‖PTo
ỹ‖

‖ũ‖ =
‖˜̃y‖
‖ũ‖

≤ ‖ỹ‖
‖ũ‖ (4.20)
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From equation 4.20, we have

‖PTo
� S � PTi

‖ = sup
u6=0

‖˜̃y‖
‖ũ‖

≤ ‖S � PTi
‖

≤ ‖S‖. (4.21)

Since I is a subset of S’s input space, it is clear that

‖PTo
� S � PTi

‖I = sup
u6=0,u∈Ĩ

‖˜̃y‖
‖ũ‖

≤ sup
u6=0

‖ỹ‖
‖ũ‖

= ‖PTo
� S � PTi

‖. (4.22)

Based on equations 4.21 and 4.22, we conclude that

‖PTo
� S � PTi

‖I ≤ ‖S‖.

End of Proof.

The norm of an operator with truncated inputs and truncated outputs have the

following properties.

1. For two input truncation operators PTi,1
and PTi,2

, if Ti,1 < Ti,2, then

‖PTo
� S � PTi,1

‖ ≤ ‖PTo
� S � PTi,2

‖ (4.23)

that is, ‖PTo
� S � PTi

‖ increases monotonically as Ti increases.

2. For two output truncation operators PTo,1
and PTo,2

, if To,1 < To,2, then

‖PTo,1
� S � PTi

‖ ≤ ‖PTo,2
� S � PTi

‖, (4.24)

that is, ‖PTo
� S � PTi

‖ increases monotonically as To increases.

3. For two sets I1 and I2 of S’s input space, if I1 ⊂ I2, then

‖PTo
� S � PTi

‖I1 ≤ ‖PTo
� S � PTi

‖I2, (4.25)

that is, ‖PTo
�S �PTi

‖I increases monotonically as the cardinality of I increases.
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4. In theorem 4.1.2, as Ti and To go infinity and I approaches S’s input space,

‖PTo
� S � PTi

‖I will approach ‖S‖, that is, the following equation holds:

lim
Ti→∞,

To→∞,

I→S′s input space

‖PTo
� S � PTi

‖I = ‖S‖ (4.26)

These properties ensure that tighter bounds on the norm can be found at the

expenses of more computation.

Theorem 4.1.2 provides a theoretical basis to compute a lower bound of the 2-

induced norm of ∆C . In the following section, we introduce an algorithm to compute

a lower bound of the 2-induced norm of ∆C .

4.2 Algorithm to Compute A Lower Bound of the Software Controller

Uncertainty

Figure 4.3 shows the components and variables needed to compute a lower bound

of ‖∆C‖2−ind. Figure 4.4 shows the algorithm. The basic idea of the algorithm is, for

each reference input r ∈ Ir, first obtain the trajectories of x and uCr
up to truncation

time T of the closed-loop system Gr which consists of P and Cr, then compute the

trajectories of ur of C using the same state trajectories as obtained in the closed-loop

system Gr. After that compute

δj,k =
‖uCr

− uC‖2

‖x‖2

for each j = {1, ..., M}, k = {1, ..., N}

Then the maximum of δj,k is a lower bound of ‖∆C‖. The larger the truncation

value T and the larger the input set Ir, the closer this lower bound is to ‖∆C‖.

Three components are necessary to compute a lower bound on ‖∆‖2−ind. The

first is the mathematical model of the plant P that is to be controlled. The second

is the mathematical model of a digital controller C which is designed to stablize the

closed-loop system. Both of these models are discrete and the sampling time is ts.

The third is the software Cr which implements the digital controller model.
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1: components

2: P : plant to be controlled;

3: C: mathematical model of the digital controller;

4: Cr: software implementation of the digital controller;

5: variables

6: r: external reference input;

7: Ir: a subset of external reference inputs;

8: M : the cardinality of Ir;

9: N : the total number of trajectories of x;

10: uC: output of C and also control input to plant P ;

11: x: state of plant P which is fed back to C and Cr; x(0) = 0;

12: Xstate: a set trajectories of state x, spanned from the initial condition x(0);

13: uCr
: output of Cr and also control input to plant P ;

14: T : time at which signals are truncated;

15: ts: sampling time;

Figure 4.3: Component and variables needed to compute the lower bound of ‖∆k‖
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1: begin

2: /∗ compute the trajectories of uCr
and x at each sampling time ∗/

3: for each r in Ir do

4: initialize the execution of Cr;

5: for each sampling time 0 ≤ i ≤ a = T
ts

do

6: for each trajectory x in Xstate do

7: feed r(i) and x(i) to Cr, observe its output uCr
(i);

8: save data (uCr
(i), x(i));

9: feed uCr
to P , compute x(i + 1);

10: consider non-determinism (due to A/D errors or sensor errors), by mapping

x(i + 1) into a set (x1(i + 1), x2(i + 1), ..., xn(i + 1)); and each trajectory of x

is expanded into n trajectories

11: end for

12: end for

13: stop execution of Cr;

14: /∗ using the above obtained x, compute the trajectories of uC at each sampling

time ∗/

15: for each sampling time 0 ≤ i ≤ a = T
ts

do

16: for each trajectory x in Xstate do

17: feed r(i) and x(i) to C, compute its output uC ;

18: save data (uC(i), x(i));

19: end for

20: end for

21: /∗ compute ‖uCr−uC‖2

‖x‖2

for each trajectory ∗/

22: for each trajectory x in Xstate do

23: compute δj,k =

√
|uCr (0)−uC (0)|2+|uCr (1)−uC (1)|2+...+|uCr(a)−uC (a)|2√

|x(0)|2+|x(1)|2+...+|x(a)|2

24: end for

25: end for

26: /∗ compute a lower bound of ‖∆k‖ ∗/

27: ‖PT � ∆C � PT‖Ir
= max{δ1,1, δ1,2, ..., δ1,N , ..., δM,1, δM,2, ..., δM,N}

28: end

Figure 4.4: Algorithm to compute a lower bound of ‖∆C‖
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Then we choose a set of external reference inputs Ir which we want the closed-loop

system to follow. At each sampling time i × ts, every variable is referenced by using

index i, for example, state value at sampling time i is x(i) as in line 7. Due to the

non-determinism of A/D devices and sensors, given any reference input r, there is a

set (x(i), uCr
(i)) corresponding to a given, that is, there are a set of state trajectories

x and a set of control input tragectories uCr
corresponding to each reference input r

as in line 10. Trajectory set Xstate contains all of these trajectories. Since the initial

state is assumed 0, given any reference input r, at the first sampling time, Xstate only

contains x(0) = 0 in line 7. After feeding r(0) and x(0) into Cr, we get uCr
(0). We then

compute x(1) based on the mathematical model of P . Then taking non-determinism

into account, the value of x(1) is mapped into a set (x1(1), x2(1), ..., xn(1)). Now

Xstate = {(x(0), x1(1)), (x(0), x2(1)), ..., (x(0), xn(1))},

which means Xstate contains n trajectories. For each xi(1), i = {1, 2, ..., n} together

with r(i) fed into Cr, there is a corresponding output uCri(1), i = {1, 2, ..., n} for

each x(1). Similarly, at the third sampling time,

Xstate = {(x(0), x1(1), x1(2)), (x(0), x1(1), x2(2)), (x(0), x1(1), xn(2)),

(x(0), x2(1), x1(2)), ..., (x(0), xn(1), xn(2))},

which means after 2 transitions, Xstate contains n2 trajectories. Repeat this process

up to the a = T
ts

th sampling time, where T is the point at which time is truncated,

at which time Xstate contains na trajectories. The expansion of the trajectories is

shown in Figure 4.5.

The steps to check if a digital controller implementation may destablize a plant

are, first compute ‖G‖2−ind using equation 3.10 based on the mathematical model of

the plant and the mathematical model of the controller. Then compute a lower bound

of ‖∆C‖ using ‖PTo
�∆C � PTi

‖Ir
, according to the algorithm as shown in Figure 4.4.
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Figure 4.5: State trajectory expansion due to non-determinism.
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Then check if ‖PTo
� ∆C � PTi

‖Ir
< 1

‖G‖2−ind
. If ‖PTo

� ∆C � PTi
‖Ir

≤ 1
‖G‖2−ind

, the

result is inconclusive because we don’t know if ‖∆C‖ < 1
‖G‖2−ind

. If the result is

‖PTo
� ∆C � PTi

‖Ir
> 1

‖G‖2−ind
, the digital controller implementation may destabilize

the closed-loop system in the l2 input space, and the closed-loop system is unsafe in

certain sense. A conservative approach suggests that the controller designer needs to

either redesign the mathematical controller or adjust the control parameters.
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Chapter 5

Conclusions and Future Work

This work provides a theoretical basis to compute a lower bound of a system’s 2-

induced norm for black box systems. Based on the theory, an algorithm to compute a

lower bound of the 2-induced norm of the uncertainty in the sofware implementation is

presented. After the lower bound is computed, it is compared with 1
‖G‖2−ind

, where G

is the closed-loop system consisting mathematical model of the plant to be controlled

and the mathematical model of the digital controller designed. If the lower bound

is greater, the software implementation of the digital controller may destablize the

closed-loop system under l2 inputs, in order words, the closed-loop system is unsafe,

otherwise, the result is inconclusive. The unsafeness of the closed-loop system suggests

that the controller designer needs to redesign the mathematical controller.

This verification method does not require experiments which are expensive and

can be dangerous. This method does not require a mathematical approximation of

the software implementation which ignores implementation details and which may

cause false errors. The presented algorithm can be implemented in an explicit model

checker, such as Estes1. If the algorithm is implemented in an explicit model checker,

1Estes is an explicit model checker developed by Verification and Validation Lab, Computer

Science Department, Brigham Young University.
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then not only can stability property of the closed-loop system be verified, but soft-

ware bugs due to implementation details can also be found. Furthermore, a software

implementation which controls several plants concurrently can also be verified.

5.1 Future Work

The future work related to this work is:

• We know that the small gain condition in the small gain theorem is sufficient

to guarantee internal stability if ∆C is a nonlinear and time-varying stable op-

erator [3]. We don’t know if the small gain condition is neccesary to guarantee

internal stability when ∆C is nonlinear, time-varying and stable. If the condi-

tion is necessary, then this work provides a method to determine if a software

implementation of a controller will definitly destablize the closed-loop system.

• Implement the algorithm in an explict model checker to compute a lower bound

of the 2-induced norm of the uncertainty in a software implementation of a

digital controller.

• Complete a case study. Design or obtain a digital controller to control a linear

time-variant system. Implement or obtain a software implementation of this

digital controller. Compute a lower bound of the 2-induced norm of the un-

certainty in this controller software, and check if this controller software may

destabilize the closed-loop system.

• Consider a controller software implementation that controls several plants con-

currently. Verify if this implementation may destablize any one of the closed-

loop systems. And verify bugs related to concurrency issues. This would be

particularly difficult using related mothods that compute mathematical models

of software because the models would need to include an accurate model of

concurrency.

52



www.manaraa.com

• Consider plant uncertainty when verifying a software implementation. Include

plant uncertainty in the analysis framework.
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